Reconstruction is dynamic*

Nicolas GUILLIOT University of NANTES—LLING nicolas.guilliot@wanadoo.fr

August 14, 2005

Overview

Aims of this study:

• give theoretical and empirical limits to previous accounts of Reconstruction (in the generative grammar framework);

• show that Reconstruction is best analyzed within a dynamic framework where grammar and processing interact, i.e. in the spirit of Dynamic Syntax [CKM05].

Main proposal:

Reconstruction corresponds to a delay of interpretation.

1 Reconstruction: a Generative perspective

Reconstruction¹: interaction between (syntactic) displacement structures in language (interrogation, dislocation, relativization) and interpretation procedures such as the evaluation of referential expressions (proper names, pronouns and anaphors) or scope statements.

In the generative framework, scope statements crucially rely on structural dominance (c-command) and referential expressions are evaluated through binding theory (c-command and co-indexation)².

(1) [Which picture of himself₁]₂ did every student₁ give $__2$ to Mary?

 \Rightarrow The anaphor *himself* can be interpreted as a variable bound by *every student*, i.e. in the scope of this quantifier, and *picture of himself* has a distributive reading (a different *picture* for *each student*). However, there is no apparent c-command of the binder on the bindee.

^{*}I would like to thank the following persons for their help or comments: David Adger, Joseph Aoun, Hamida Demirdache for her constant help as a Phd supervisor, Danny Fox, Valérie Gautier, Mélanie Jouitteau for discussing the data in Breton, Ruth Kempson, Eric Mathieu, Jairo Nunes, Gillian Ramchand and Alain Rouveret.

 $^{^{1}}$ The word "reconstruction" comes from the first analysis of the phenomenon, based on a literal movement of the detached constituent.

²-Condition on bound variable anaphora (BVA): a pronoun or an anaphor α can be interpreted as a variable bound by a quantified argument β iff α is bound by β ;

⁻Condition A: an anaphor must be bound by an argument in its local domain;

⁻Condition B: a pronoun must be free from any argument in its local domain;

⁻Condition C: an R-expression must be free from any argument.

1.1 Reconstruction, movement and cyclicity

GG account for reconstruction: the copy theory of movement. This is a syntactic mechanism given by Lebeaux [Leb90], Chomsky [Cho95], Sauerland [Sau98] among others, in order to allow interpretation of a displaced constituent in the base position:

- (2) (a) [which picture of himself₁] did every student₁ give [picture of himself₁] to Mary?
 - (b) *[which picture of $John_1$] did he_1 give [picture of $John_1$] to Mary?

 \Rightarrow Straightforward account for grammaticality of (2a) and ungrammaticality of (2b): the copy of the displaced constituent in the original site predicts that *every student* can have scope over *picture of himself* in (2a) and condition C is violated in (2b)³.

Prediction $I \Rightarrow$ movement of an XP should lead to a reconstruction effect of that XP.

 \otimes However, Prediction I, entailed by the copy theory of movement and confirmed by cyclicity effects, is falsified in English relative clauses:

(5) The picture of $John_1$ that he_1 prefers is on the desk.

 \Rightarrow Coreference between *John* and *he* possible. However, reconstruction would lead to ungrammaticality, as Condition C would be violated⁴.

1.2 Reconstruction and resumption

Standard arguments for the absence of movement with resumption⁵: the lack of island effects in (6b) and crossover effects in (7b), as data in Breton (from [Gui06]) shows:

- (6) Island Effects:
 - (a) *An den₁ [a anevez [NP an dud₂ [o deus ____2 gwelet ____]]] the man prt you-know the people prt have seen *"the man that you know the people who saw"
 - (b) An den₁ [a anevez [NP an dud₂ [o deus ____2 gwelet anezha \tilde{n}_1]]] the man prt you-know the people prt have seen him "the man that you know the people who saw him"

(b) *Which book that he_1 asked Mrs Brown₂ for did she₂ give every student₁? \Rightarrow Coreference (index 2) and Bound Variable reading (index 1) impossible

The pattern in (3) suggests multiple intermediate sites for reconstruction, even within the IP domain, as argued in [Fox00]:

(4) [which paper that he₁ wrote for Mrs Brown₂]₃ did every student_{1 _3} get her₁ to grade $\underline{*}_3$?

 4 This relies on a head-raising analysis of relative clauses (see [Bia95]) where the NP antecedent moves in the base position (without the determiner).

⁵Only few approaches consider a movement analysis of resumption (see [Boe01] or [ACH01]).

 $^{^{3}}$ A further argument for the copy theory of movement: cyclicity effects. Movement is cyclic (see [Cho95], [FP04] among others), and reconstruction displays cyclicity effects, as [Fox00] shows:

^{(3) (}a) Which paper that he₁ wrote for Mrs Brown₂ did every student₁ get her₂ to grade? \Rightarrow Coreference (index 2) and Bound Variable reading (index 1) possible

- (7)Crossover Effects:
 - (a) * $Pep den_1$ /a gare $e_1 \quad vamm \quad __1/$ every man *prt* loved his mother "Every man_1 that his_1 mother loved"
 - den_1 /a (b) Peplares ekare e_1 vamm $anezha\tilde{n}_1/$ every man prt you-say prt loved his mother him "Every man_1 that you say that his_1 mother loved him"

Prediction II: Resumption (free of movement) should not exhibit reconstruction effects.

 \otimes This prediction is falsified by data in Breton (see [Gui06]) and Lebanese Arabic (see [ACH01]):

(8) $poltred_1 e_2 verc'h$ a lares [e]welpep tad_2 $anezha\tilde{n}_1$ picture his daughter *prt* you-say *prt* looks every father it "the picture₁ of his₂ daughter that you say that every father₂ is looking at it₁"

1.3Positive vs negative conditions

The study of Reconstruction facts with resumption leads to another paradox (data from Breton):

- (9)(a) $poltred_1 \ e_2 \ verc'h \ [a \ larges \ [e \ wel \ pep \ tad_2 \ anezha\tilde{n}_1]]$ (BVA)"the picture₁ of his₂ daughter that you say that every father₂ is looking at (it_1) "
 - (b) $poltred_1$ $Yann_2$ /a lares $en deus (pro_2) en_1 qwelet$ (Condition C) picture Yann prt you-say prt has it seen "the picture₁ of Yann₂ that you say that he₂ has seen (it_1) "

 \Rightarrow (9a) argues for **Reconstruction** in the site occupied by the resumptive pronoun, as variable binding (requiring scope of the binder on the bindee) is possible;

 \Rightarrow (9b) argues for the **absence of Reconstruction** in this site, as coreference is possible.

Scope reconstruction: definite vs indefinite antecedents 1.4

Based on Alexopoulou & Heycock [AH02]:

- (a) The secretary called the patient that each doctor will examine tomorrow. (10)
 - (b) The secretary called the two patients that each doctor will examine tomorrow.

 \Rightarrow The definite antecedent, as in (10a) and (10b), allows for a narrow-scope/distributive reading with respect to *each doctor*, as if part of it were 'reconstructed' in the relativized site ([Bia95]).

- (11)(a) The secretary called a patient that each doctor will examine tomorrow.
 - (b) The secretary called two patients that each doctor will examine tomorrow.

 \Rightarrow The indefinite antecedent, as in (11a) and (11b), only allows for a wide-scope (referential or specific) reading, hence does not 'reconstruct' in the relativized site.

To account for the contrast, [AH02] argue that the definite determiner induces a functional interpretation of its restriction (based on [Löb85]).

Prediction III: a definite antecedent allows for reconstruction, an indefinite does not.

 \otimes However, this distinction between definite and indefinite antecedents can not capture all the facts, as the examples in (12) show:

(12) (a) Mary saw a picture of himself₁ that each man₁ has brought.

(b) A woman that each man_1 invited was his_1 mother.

 \Rightarrow Both examples in (12) involve indefinite antecedents which certainly allow for reconstruction (narrow-scope/distributive reading).

2 Dynamic syntax

Based on the following:

- incremental (word by word) building of syntactic and semantic representations as a tree;
- underspecification in language (a kind of context dependency);
- modality, on a node n:

 $-\langle \downarrow_0 \rangle \, X$ means 'X holds at an argument-daughter node of n.'

 $-\langle \downarrow_1 \rangle X$ means 'X holds at a functor-daughter node of n.'

 $-\langle\downarrow_*\rangle X$ means 'X holds at a node dominated by n.' (the level of embedding is underspecified) $-\langle\uparrow_*\rangle X$ means 'X holds at a node that dominates n.' (the level of embedding is underspecified) $-\langle L^{-1}\rangle X$ means 'X holds at a node that n is linked to.'

- requirements, written as ?X;
- lexical representation of words as lexical actions (or programs) on the tree;

		IF $?Ty(e \rightarrow t)$	Trigger
(13)	Upset'	THEN $go(\langle \uparrow_1 \rangle ?Ty(t)),$	Go to mother node
		put(Tns(PAST)),	Tense specification
		$go(\langle \downarrow_1 \rangle?Ty(e \to t)),$	Go to functor node
		$make(\langle \downarrow_1 \rangle),$	Make a functor node
		$\operatorname{go}(\langle \downarrow_1 \rangle),$	Go to functor node
		$put(Fo(Upset'), Ty(e \rightarrow (e \rightarrow t)));$	Decorate
		$\operatorname{go}(\langle \uparrow_1 \rangle);$	Go to mother node
		$make(\langle \downarrow_0 \rangle);$	Make an argument node
		$\operatorname{go}(\langle \downarrow_0 \rangle);$	Go to argument node
		$\operatorname{put}(?Ty(e))$	Decorate
		ELSE ABORT	

 \bullet localization of the node under process with the pointer $\diamond.$

2.1 A sketch of the process

How Dynamic Syntax operates for a sentence like *Hilary upset Joan* ...

-Initial requirement $\Rightarrow ?Ty(t)$

-Parsing Hilary \Rightarrow ?Ty(t)

$$Ty(e), \qquad ?Ty(e \to t)$$

Fo(Hilary'), \diamond

-Parsing
$$Upset \Rightarrow$$

 $Ty(e),$
 $Fo(Hilary')$
 $Ty(e), \diamond$
 $Ty(e \to t)$
 $Ty(e), \diamond$
 $Ty(e \to t)$
 $Ty(e), \diamond$
 $Ty(e \to t)$
 $Fo(Upset')$

-Parsing
$$Joan \Rightarrow$$

 $Ty(e),$
 $Fo(Hilary')$
 $Ty(e),$
 $Ty(e),$
 $Ty(e \to t)$
 $Ty(e),$
 $Ty(e \to (e \to t)),$
 $Fo(Joan'), \diamond$
 $Fo(Upset')$

-Combination of types/formulas \Rightarrow $Ty(e), Ty(e) \rightarrow t), \diamond,$ Fo(Hilary') Fo(Upset'(Joan')) $Ty(e), Ty(e \rightarrow (e \rightarrow t)),$ Fo(Joan')Fo(Upset')

2.2 Movement: structural underspecification+update

2.2.1 Dislocation: structural underspecification

(14)
$$?Ty(t), \diamond \Rightarrow \qquad \frac{Tn(0), ?Ty(t)}{\langle \uparrow_* \rangle Tn(0), ?Ty(e), ?\exists x.Tn(x), \diamond}$$

 \Rightarrow The modal statement $\langle \uparrow_* \rangle Tn(0)$ creates an unfixed node (process of *Adjunction) which follows the pointer and can then be unified with a fixed position:

(15) Parsing Joan, Hilary upset:

$$\begin{array}{ccc} Tn(0), ?Ty(t) \\ \hline Tn(00), Ty(e), & Tn(01), ?Ty(e \to t) \\ \hline Fo(Hilary') & \hline Tn(010), ?Ty(e), \diamond, & Ty(e \to (e \to t)), \\ \hline \langle\uparrow_*\rangle Tn(0), ?\exists x.Tn(x), & Ty(e \to (e \to t)), \\ Ty(e), Fo(Joan') & Fo(Upset'), Tn(011) \end{array}$$

2.2.2 Relativization: LINKed trees

Relativization is designed to express two assertions about one element of type e:

(16) The man that Sue likes left.

 \Rightarrow Sue likes a man \wedge the man left.

 \Rightarrow In DS, creation of a LINKed tree, and a possible creation of an unfixed node decorated with the formula of the antecedent⁶:

2.3 Resumption

(17) ?A professor who nobody liked him finally retired.

A resumptive pronoun is treated like any pronoun: it introduces an underspecified variable.

⁶Notice that, in DS, all elements of type e have a complex structure with a variable (Ty(e)), a restrictor $(Ty(e \rightarrow cn))$ and a determiner $(Ty(cn \rightarrow e))$.

(18)
$$him \begin{bmatrix} \text{IF} & ?Ty(e) & \text{Trigger} \\ \text{THEN } \text{put}(Ty(e), Fo(U_{Male'}), & \text{Type+Formula Decoration} \\ ?\exists x.Fo(x)) & \text{Requirement for a specified formula} \\ \text{ELSE ABORT} \end{bmatrix}$$

Technically, two possibilities for the identification of the variable:

• unification with an unfixed node created precedingly:

• substitution with a formula of the context (ex: Fo(x)), if no unfixed node was created⁷:

⁷For concreteness, we illustrate this strategy with English. However, notice that [CKM05] propose this alternative for other languages than English (such as Arabic).

2.4 Scope statements

Scope evaluation is based on the incremental building of scope statements (ex: x < y):

• The variables of any element of type e feed scope statements at the local type-t-requiring node. A sequence of scope statements is thereby accumulated on that node.

- Scope ordering follows time-linear evaluation of the variables⁸.
- (19) Hilary upset the sister of John

$$Fo(Upset'(\iota, y, Sister'(\iota, z, John'(z))(y))(\iota, x, Hilary'(x))) \qquad S_i < x < y < z$$

$$Fo(\iota, x, Hilary'(x)) \qquad Fo(Upset'(\iota, y, Sister'(\iota, z, John'(z))(y)))$$

$$Fo(\iota, y, Sister'(\iota, z, John'(z))(y)) \qquad Fo(Upset')$$

3 Dynamic Reconstruction

We propose that reconstruction follows from two parameters:

- Structural or lexical underspecification prevents direct evaluation;
- Unification of an unfixed node gives rise to reconstruction⁹.

3.1 Definite antecedents allow for reconstruction

Recall the example:

- (20) The secretary called the patient that each doctor will examine tomorrow.
 - \Rightarrow Reconstruction is possible as narrow-scope/distributive reading of *patient* is available.

Following [Bia95]'s claim that the relativized site of a restrictive is interpreted as an indefinite, we propose a rule which introduces an underspecified choice function of type $(cn \rightarrow e)$, written $f_U(X)$, as Fig. 1 shows¹⁰:

$$\begin{array}{c} ?Ty(e) \\ \hline Fo(Patient'), Ty(cn) & Fo(\lambda P.\iota, P) \\ | \\ Fo(f_U(Patient')), Ty(e), \diamond \\ \hline \\ Figure 1. Choice function introduction \end{array}$$

⇒ This choice function can be compared to [Kra98]'s parametrized choice functions for indefinites as it takes a restriction and entity as its arguments and returns an entity of type e. The underspecification can then be updated with any variable from the already defined scope statements $(S_i, x, y...)^{11}$.

The narrow-scope reading in (20) is then expected, as the choice function can be updated with the variable x ($f_x(Patient')$):

⁸except for the indefinite which has an underspecified scope under [CKM05]'s approach.

⁹Reconstruction then corresponds to a delay in evaluation.

 $^{^{10}}$ This constitutes a slight modification of [CKM05]'s approach to terms of type e.

¹¹We also argue for a generalization of this analysis for indefinites, contra [CKM05]'s approach based on epsilon terms (ϵ).

3.2 The contrast with indefinite antecedents

- (21) (a) The secretary called a patient that each doctor will examine tomorrow. \Rightarrow No reconstruction (wide-scope reading strongly preferred).
 - (b) Mary saw a picture of himself₁ that each man₁ has brought. \Rightarrow Reconstruction (narrow-scope reading available).
 - (c) A woman that each man₁ invited was his₁ mother. \Rightarrow Reconstruction (narrow-scope reading available).

Following dynamic property of language, a string is evaluated as soon as it can be fully specified.

(22) Parsing the secretary called a patient in (21a):

$$Tns(PAST), ?Ty(t) \quad S < x < y$$

$$Ty(e), \qquad ?Ty(e \to t)$$

$$Fo(\iota, x, Secretary'(x)) \qquad Ty(e), \qquad Ty(e \to (e \to t)),$$

$$Fo(f_S(y, Patient'(y))), \diamond \qquad Fo(Call')$$

 \Rightarrow No underspecification left: the string can be evaluated.

(23) Parsing Mary saw a picture of himself in (21b):

$$Tns(PAST), ?Ty(t) \quad S < x$$

$$Ty(e), \quad ?Ty(e \to t)$$

$$Fo(\iota, x, Mary'(x)) \quad Ty(e), \quad Ty(e \to (e \to t)),$$

$$Fo(f_S(Picture'(U_{anaph}))), \diamond \quad Fo(See')$$

 \Rightarrow Lexical underspecification on the anaphor cannot be updated: the string cannot be evaluated. The unfixed node created in the relative clause will enable delay of evaluation (reconstruction).

Straightforward account for (21c) too, as incremental building of semantic representation creates an equivalence between two functions:

$$(24) \quad f_U[(y, Woman'(y)) \land (\iota, x, Man'(x)) \to (Invite'(y)(x))] = g_x[(Mother'(z))]$$

3.3 Reconstruction with resumption

How can resumption exhibit reconstruction effects? -lexical underspecification forces a delay in evaluation: $Fo(Poltred'(Verc'h'(U_{Male'})))$. -subsequent structural underspecification (possible unfixed node of the relative clause) enables this delay.

(25) $poltred_1 \ e_2 \ verc'h$ [a lares [e wel pep tad_2 ane $zha\tilde{n}_1$]] picture his daughter prt you-say prt looks every father it "the picture₁ of his₂ daughter that you say that every father₂ is looking at it₁"

3.4 Positive vs negative conditions

Recall the paradox:

(26) Binding, Reconstruction and Resumption in Breton:

- (a) $poltred_1 \ e_2 \ verc'h \ a \ lares \ e \ wel \ pep \ tad_2 \ anezha\tilde{n}_1 \ (BVA)$ picture his daughter prt you-say prt looks every father it "the picture₁ of his₂ daughter that you say that every father₂ is looking at (it₁)" $\Rightarrow Reconstruction$
- (b) $poltred_1 Yann_2$ [a lares [en deus $pro_2 en_1$ gwelet]] (Condition C) picture Yann prt you-say prt has it seen "the picture₁ of Yann₂ that you say that he₂ has seen (it₁)" \Rightarrow Absence of reconstruction

(27) Parsing (26b):

$$\begin{array}{c} & & & & & \\ & & & & & & \\ & & & & &$$

 \Rightarrow No lexical underspecification forces reconstruction.

3.5 Reconstruction and movement

(28) The picture of John₁ that he₁ prefers is on the desk. \Rightarrow No reconstruction (coreference between John and he possible).

Why is there no reconstruction in (28)?

 \Rightarrow Direct evaluation of the antecedent is possible as there is no underspecification (lexical or structural)¹²:

4 Further argument: English vs Breton

A further argument for this processing approach to reconstruction comes from the following contrast between English and Breton:

picture Yann *prt* loved he *prt* has been torn "the picture of Yann₂ that he₂ loved has been torn." \Rightarrow Reconstruction (coreference between John and he impossible).

What makes Breton different from English?

 \Rightarrow Breton is often classified as a V2 language where one constituent of the sentence (anyone) occupies the first position. In DS framework, structural underspecification would be at stake. This underspecification will ban direct evaluation of the antecedent at the local *type-t* node.

(30) Parsing (29b):

$$\begin{array}{c} Tn(0),?Ty(t) \\ & \overbrace{\langle\uparrow_*\rangle Tn(0),?Ty(e)} \\ & \overbrace{\lambda P.\iota,P} \\ Fo(Poltred'(\iota,x,Yann'(x))) \\ & \downarrow \\ Ty(e), \\ Fo(f_S(Poltred'(\iota,x,Yann'(x)))), \diamond \end{array}$$

 $^{^{12}\}mbox{There}$ will be structural underspecification only when the relative clause is parsed.

Conclusion

We provided several empirical arguments for a processing account for reconstruction data: -Lexical underspecification forces reconstruction (as the string cannot be evaluated); -Structural underspecification (unification of an unfixed node) embodies reconstruction.

Another possible argument for this account: reconstruction data in 'scrambling' languages, treated with structural underspecification in DS.

References

- [ACH01] J. Aoun, L. Choueiri, and N. Hornstein. Resumption, movement and derivational economy. *Linguistic Inquiry*, 32:371–403, 2001.
- [AH02] A. Alexopoulou and C. Heycock. Relative clauses with quantifiers and definiteness. In *Choice functions and natural languages semantics*, 2002.
- [Bia95] Valentina Bianchi. Consequences of Antisymmetry for the syntax of headed relative clauses. PhD thesis, Scuola Normale Superiore, Pisa, 1995.
- [Boe01] Cédric Boeckx. Mechanisms of chain formation. PhD thesis, MIT, Cambridge, 2001.
- [Cho95] Noam Chomsky. The minimalist program. MIT Press, 1995.
- [CKM05] R. Cann, R. Kempson, and L. Martens. The Dynamics of Language. Oxford, 2005.
- [Fox00] Danny Fox. Economy and the semantic interpretation. MIT Press, 2000.
- [FP04] D. Fox and D. Pesetsky. Cyclic linearization and syntactic structure. *Theoretical linguistics*, 2004.
- [Gui06] Nicolas Guilliot. A top-down analysis for reconstruction. *Lingua*, Special issue on Celtic languages, 2006.
- [Kra98] Angelika Kratzer. Scope or pseudoscope? are there widescope indefinites? In *Events* in *Grammar*. 1998.
- [Leb90] David Lebeaux. Relative clauses, licensing and the nature of the derivation. In *Proceedings of NELS*, number 20, pages 318–332, 1990.
- [Löb85] S. Löbner. Definites. Journal of semantics, (4):279–326, 1985.
- [Sau98] Uli Sauerland. The meaning of chains. PhD thesis, MIT, Cambridge, 1998.